
MATHEMATICS OF COMPUTATION 
Volume 68, Number 226, April 1999, Pages 881-885 
S 0025-5718(99)01060-1 

SOLVING POLYNOMIALS BY RADICALS 
WITH ROOTS OF UNITY IN MINIMUM DEPTH 

GWOBOA HORNG AND MING-DEH HUANG 

ABSTRACT. Let k be an algebraic number field. Let a be a root of a polynomial 
f E k[x] which is solvable by radicals. Let L be the splitting field of a over 
k. Let n be a natural number divisible by the discriminant of the maximal 
abelian subextension of L, as well as the exponent of G(L/k), the Galois group 
of L over k. We show that an optimal nested radical with roots of unity for 
a can be effectively constructed from the derived series of the solvable Galois 
group of L((n) over k((n) 

1. INTRODUCTION 

It was shown in [8] that whether a polynomial with rational coefficients is solvable 
by radicals can be decided in polynomial time. Given that a polynomial is solvable 
by radicals, it is also of interest to construct a nested radical of minimum possible 
depth for the polynomial. Partial results for this problem can be found in [2, 6, 7, 
11]. More recently, a general solution to the problem has been reported in [5]. 

An interesting relaxation for the problem is to allow roots of unity, in addition to 
elements of the ground field, to be used as primitives in the construction of nested 
radicals. No restriction is placed on the roots of unity that can be used for the 
construction. The goal of this paper is to determine a root of unity for constructing 
a nested radical of minimum depth for a root of a polynomial which is solvable by 
radicals. 

Throughout this paper, k denotes an algebraic number field, k the algebraic 
closure of k, p the set of all roots of unity, and (n = e2X/T. 

Let a be a root of a polynomial f E k[x] that is solvable by radicals. Let L be 
the splitting field of a over k. Let Loo be the splitting field of a over, k(Gu). A 
near-optimal construction of a nested radical with roots of unity for a is given in 
[7]. It is also shown in [7] that the minimum depth of a nested radical with roots of 
unity for a is determined by the length of the derived series of the solvable Galois 
group of Loo over k(u). To effectively construct an optimal nested radical for a, 
it is desirable to have a similar characterization in terms of a specific root of unity. 
Let n be a natural number divisible by the discriminant of the maximal abelian 
subextension of L, as well as the exponent of G(L/k), the Galois group of L over 
k. We show that the minimum depth of a nested radical with roots of unity for a 
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is determined by the length of the derived series of G(L((:)/k((:)), and that an 
optimal nested radical with roots of unity for a can be effectively constructed from 
the tower of extensions corresponding to the derived series. 

1.1. Definitions and main result. Nested radicals are expressions that can de 
defined recursively as follows. An element a of k(upO) is considered a nested rad- 
ical of depth 0. Inductively, if A and B are nested radicals of depth d(A) and 
d(B), respectively, and * E {+, -I x, x }, then A * B is a nested radical of depth 
max(d(A), d(B)); and for n > 1, A is a nested radical of depth d(A) + 1. The two 
expressions v2X x V3 and V4, for example, are considered distinct nested radicals 

of depth 1. Similarly V/ + v'2V3 and \/X(1 + v) are distinct nested radicals 
of depth 2. 

A simple nested radical is either an element of k(C,O) or a nested radical of the 
form A where A is a nested radical and n > 1. Let E be a nested radical. Then 
S(E) denotes the set of simple nested radicals that appear in E. To be precise, 
if E = a for some a E k(Gu,), then S(E) = {a}; inductively if E = B * C for 
nested radicals B and C, then S(E) = S(B) U S(C); if E = B, then S(E) 
S(B) U { B}. For example, 

E = + /i + X 2 + X 2 

has depth 3 and S(E) consists of V2/ , V 
3 + 1, and V2. 

A field extension K over k is a root extension if K = k(al, .. ., am) where, for 
all 1 < i < m, a xni = ai E k for some integer ni > 1. aI,... am form a set of 
generating roots for K/k, and ai is called a generating root of degree ni if ni is the 
least positive integer such that ani E k. A root tower over k is a tower of extensions 
k = ko C k, c ... c kn such that ki/ki-1 is a root extension for 1 < i < n. If a 
is a generating root of degree m for ki/ki-1, then it is called a generating root of 
degree m for the tower at level i. 

An element of k represented by a nested radical E is called a root of E. If 
E = a E k(Cu,), then it has a unique root a. If E has depth d > 0, then a root of 
E can be determined after a consistent assignment of roots is made for the simple 
nested radicals associated with E. To be precise, suppose inductively a root r(A) 
has been determined for every simple nested radical A E S(E) of depth less than 
d. Then a root has also been determined for every arithmetic expression in these 
simple nested radicals. Let B E S(E) be of depth d. Then B = A where n > 1 
and A is an arithmetic expression in the simple nested radicals in S(E) of depth 
less than d. Since a root r(A) E k is already determined for A, an r(B) E k can be 
assigned as a root for B if r(B)n = r(A). When a root is assigned for each simple 
nested radical associated with E, then a root -y is also assigned for E. Let k = ko 
and inductively for i > 0, let ki be the field over ki-1 generated by the roots assigned 
to the simple nested radicals of depth i in S(E). Then k = ko C k1 c ... c kd 
is called a root tower determined by E and -y is said to be a root of E determined 
from the root tower. 

Take E = <W +1 + X as an example. Let u be the unique real root of 
x3 = 2 and v be a real root of y5 = U + 1. Then v + u is a root of E. However, 
it would be inconsistent to assign v to rv2 + and a root u' different from u to 

. Consequently v + u' is not a root of E. The root tower of v + u determined by 
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E is Q c Q(u) c Q(u, v). For another example let A = 2' and B = v'2V3+ v'6. 
We note that every root of A is a root of B but not vice versa. Indeed B has the 
additional root 0 as a result of assigning the positive real root to vX_ and v16 and 
the negative real root to 3. 

On the other hand, let T: k = ko c k c ... c k be a root tower. Then 
there is a natural way to associate an elemernt in ki to a nested radical of depth 
no greater than i. Fix a set of generating roots for each ki/ki-I for i = 1 to n. 
Let -y be an element of kd in the root tower. Let a be a generating root at level 
1 of degree m such that am = a E ko. Then m a is a nested radical of depth 1 
associated with a and has a as a root. Inductively suppose a nested radical Bi 
of depth less than d is determined for every generating root fi at level less than 
d so that fi is a root of Bi. Suppose 3 is a generating root at level d of degree 
e, with /3 = g(01,... ,13i), where pi are the generating roots at level < d and 
g E k(xi,... ,xi). Then e g(Bi,... ,B1) is a nested radical of depth no greater 
than d associated with : and has 3 as a root. Once a nested radical is determined 
for every generating root at level 1 to d, a nested radical with -y as a root is also 
determined for -y. We call it a nested radical for -y determined by the root tower T. 

Let G be a group and let x, y E G. The commutator of x and y is the element 
x-1y- xy. The commutator subgroup of G is the subgroup generated by all the 
commutators of G. We shall use GM1) to denote the commutator subgroup of G 
and use G(') to denote the commutator subgroup of G('-') for i > 1. We also let 
G(?) = G. When G is solvable, the chain of groups G = GM GD 1 D GC(2) D ... 

is called the derived series of G. The length of the derived series, denoted l(G), is 
the smallest positive integer n such that G (n) {1}. 

Let G be a group and let H be a normal subgroup of G. Then (G/H)(i) 
G(')H/H for all i > 0, and l(G/H) < I(G). Moreover if G/H is abelian then 
G(1) C H. 

We are ready to state the main theorem. 

Theorem 1.1. Let k be a number field. Let a be a root of an irreducible polyno- 
mial in k[x] that is solvable by radicals. Let L be the splitting field of the polynomial 
over k. Let Lab be the maximal abelian subextension of L over Q. Let n be a nat- 
ural number that is divisible by the discriminant of Lab over Q and the exponent 
of G(L/k), the Galois group of L over k. Then the tower of field extensions cor- 
responding to the derived series of G(L((n)/k((n)) is a root tower, ajid a nested 
radical for a determined by this root tower is a nested radical for a of minimum 
depth with roots of unity. 

2. PROOF OF THE MAIN THEOREM 

Lemma 2.1. Let k be a number field. Let ko c k1 c ... c kd be a root tower 
with k c ko. Let Ki be the composite of k' for all a E G(k/k). Then Ki/k, 
Ki(iOo)/Ko(Cuo) are Galois for i = 0, ... , d, Ko(wo,) c K, (wco) c ... c Kd(wo) is 
a root tower, and l(G(Kd(p,t)/Ko(upo))) < d. 

Proof. For all a E G(k/k), kJ C kc c ... c k' is again a root tower. Since each ki 
has finitely many conjugates over k, it follows that Ko c K1 c ... c Kd is a root 
tower. Hence, writing Ki' = Ki(Goo), KiJKi_I is abelian, and K1o C KI c ... c Kd 

is a root tower of abelian extensions. In particular G(KI/KO) is solvable of length 
at most d. 
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Finally, for all i, since Ki is the composite of k' for all a E G(k/k), Ki/k is 
Galois, and it follows that Ki/Ko and KJ'Ko are Galois as well. LIi 

Proposition 2.2. Let K be an abelian extension over Q. Let n E N be divisible 
by the discriminant of K over Q. Then K C Q((Q. 

Proof. From the conductor-discriminant formula (see [3] p. 160), it follows that the 
conductor of K over Q divides the discriminant of K over Q. Hence noo is divisible 
by the conductor of K/Q, and it follows from the Kronecker-Weber Theorem (see 
[4] p. 175) that K C Q((cn). LI 

Proof of the main theorem. Let F =k n Q(Qo). Then there is a canonical isomor- 
phism q from the abelian group G(k(Cu,)/k) onto G(Q(Gu,)/F). 

Let K = L n k(p,o). Since Lab =L n Q(p,o) = K n Q( (o), G(k(pwo)/K) v 

G(Q(p,,)/Lab) under q. Consequently G(K/k) and G(Lab/F) are isomorphic. It 
follows that K = kLab. 

Since n is divisible by the discriminant of Lab over Q, it follows from Proposi- 
tion 2.2 that Lab c Q((n). Hence K = kLab C k((n). It follows that K = Lnk((n). 

Since L(Cu,) is the composite of L and k(Cuo), G(L/K) -_ G(L(bto)/k([t,,)) On 
the other hand since L((n) is the composite of L and k((n), and since K = Lnk((n), 
G(L/K) - G(L((n)/k((n)). Hence G(L((n)/k((n)) _v G(L(bto)/k([t,,)), and so 
l(G(L((n)/k((n))) = l(G(L(poo)/k(uoo))). 

Since n is divisible by the exponent of G(L/k), the tower of subfields of L((n) 
corresponding to the derived series of G(L((n)/k((n)) is a root tower T by Kummer 
theory. Let B be a nested radical for a determined by T. Then depth(B) < 
I (G(L((:n)/k((:n))) = I (G(L(pcoo)1k([to)o))). 

Let d be the depth of a nested radical B' for a of minimum depth with roots of 
unity. Let m be such that all the roots of unity used in B' are powers of (m* Let 
ko = k(m) c k c .. c kd be the root tower for a determined by B'. Let Ki, O < 
i < d, be the composite of kV for all a E G(k/k). Then by Lemma 2.1, Ki/k and 
Ki (pOO ) /Ko ([t ) are Galois for i = 0, ..., d, Ko (Cuco) c K u (,uo ) C ... C Kd (Cup) is 
a root tower and l(G(Kd(bt,)/KoC(u,))) < d. Note that Ko = ko as ko/k is Galois. 
Hence Ko(C,u) = ko(upo) = k(Cu,), and so l(G(Kd(bto)/k([t,o))) < d. 

Since Kd is Galois over k and a E Kd, we have L C Kd. Let 

G = G(Kd([t,,)/k([t,,)) and H = G(Kd(,)1L(,,))- 
Since L(p,,)/k(Cu,) is Galois, H is a normal subgroup of G, so l(G(L(A")/k(Cu))) 
= l(G/H) < I(G) < d. Therefore, depth(B) < l(G(L(p ,)/k(Cu,))) < d. This 
implies depth(B) = d; hence B is a nested radical of minimum depth for a with 
roots of unity. This completes the proof of the main theorem. 

Finally we describe an algorithm for the construction of an optimal nested radical 
with roots of unity for a solvable irreducible polynomial h. 

Let h be the irreducible polynomial of a. An irreducible polynomial g and the 
Galois group for the splitting field L of a over k can be computed by an algorithm 
in [7]. The time complexity as well as the length of g are polynomial in the length 
of h and the degree of L over k. From the Galois group the exponent I of the group 
can be computed in time polynomial in the size of the group. 

Let G be the norm of g over Q. Let H = G/(G, G'). Then H is an irreducible 
polynomial for L over Q. We can convert H into an monic integral irreducible 
polynomial by a standard technique as follows. Without loss of generality assume 
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H = EN 0 aix', where ai E Z. Let a be a root of H. Then aNa is a root of the 
monic integral polynomial H1 = xN + ENZ 1 aN- l-aix'. Hence H1 is a monic 
integral irreducible polynomial for L over Q. It follows that the discriminant of 
H1, D(H1), is divisible by D(L/Q), hence by D(Lab/Q). So by Theorem 1.1, the 
root of unity can be taken to be (, where n = ID(H,) I. We remark that the length 
of n is polynomial in the length of the irreducible polynomial for specifying k, the 
length of h, and [L: k]. Hence n may be doubly exponential in the degree of h, as 
[L: k] may be exponential in the degree of h. 

Once n is computed, we can compute a nested radical corresponding to the 
derived series of G(L((n)/k((n)) by applying the procedures developed in [7]. The 
running time is polynomial in n, [L: k], and the length of the irreducible polynomial 
for a, hence it is, in the worst case, doubly exponential in the input size. 
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